NOVEL REACTIONS OF ORGANIC SULFUR AND SELENIUM COMPOUNDS WITH THALLIUM(III) NITRATE : SULFOXIDE AND SELENOXIDE FORMATION AND PUMMERER-LIKE REACTION

Yoshimitsu Nagao, Masahito Ochiai, Kimiyoshi Kaneko, Akio Maeda, Kohii Watanabe, and Eiichi Fujita*

Institute for Chemical Research, Kyoto University, Uji, Kyoto-Fu, 611, Japan

(Received in Japan 23 February 1977; received in UK for publication 2 March 1977) Recently, Taylor, McKillop *et al.*¹ have developed several interesting new reactions using thallium(III) nitrate (TTN) as the oxidant. Now, Tl(III), a soft acid, is expected to have a high and selective reactivity with divalent sulfur or selenium atom, a soft base.² Nevertheless, the reactions of organic sulfur or selenium compounds with Tl(III) have little or never been published.³ We wish to report here the new synthetic methods of sulfoxides (<u>3</u>) and selenoxides (<u>4</u>) by the reactions of several aliphatic and aromatic sulfides (<u>1</u>) or selenides (<u>2</u>) with TTN, respectively, and of α -oxoacetals and α -diketones by their Pummerer-like reaction.

Sulfides (<u>1</u>) and selenides (<u>2</u>) were treated with TTN under such mild conditions as stirring at room temperature in suitable solvents to give sulfoxides (<u>3</u>) and selenoxides (<u>4</u>) in high yields, respectively.⁴ (See Scheme I and Table I.)

2,3-Diphenyl-5,6-dihydro-1,4-dithiin prepared from benzoin, ethane dithiol, and BF₃etherate in CHCl₃ on treatment with 1.2 mol equivalent of TTN in CHCl₃/CH₃OH (1:1) or dimethoxyethane (DME) at room temperature gave sulfoxide 5 in 72% yield within 10-15 min. In this reaction, the solution colored to green, when TTN was added, but lost color within 5 seconds in DME or 30 seconds in CHCl₃/CH₃OH (1:1). This observation suggested a long-lived cation radical <u>6</u> and/or a dication <u>7</u> as the transient intermediate.⁵ In fact, an intense ESR spectrum shown in Fig. 1 (a) was obtained, when it was measured for a concentrated solution of 2,3-diphenyl-5,6-dihydro-1,4-dithiin and TTN in DME in a degassed tube at -80° .⁶ The g-value of this radical was 2.0070±0.0005, which was close to those of the cation radicals formed from substituted thianthrenes⁷ and diaryl sulfoxides⁸ in concentrated sulfuric acid.

In the ESR spectrum of a diluted radical solution (Fig. 1 (b)), small splittings were observed, which suggested that an unpaired electron spread over the two phenyl groups. The cation radical $\underline{6}$ was thus proved, and this reaction forming 5 is suggested to proceed by a one-

1345

electron oxidation mechanism.⁹ The formation of such a stable cation radical by TTN was first observed by the authors, and an interesting ESR investigation will be further developed.

In the hope of developing to the Pummerer-like reaction, we applied this reaction to several alkylthioacetyl compounds and α -phenylseleno ketones. The alkylthioacetyl compounds were synthesized in high yields by the reaction of the corresponding haloacetyl compounds with the stoichiometric quantity of Tl(I) thiolates¹⁰ at room temperature. These organosulfur compounds on treatment with TTN at room temperature gave the α -oxoacetals in satisfactory yields with the precipitation of Tl(I) nitrate. (See Table II)

ent-17-Nor-15β-phenylselenokauran-16-one (<u>8</u>) on treatment with TTN (3 mol. equivalents) in CH₃OH or THF for 24 hr afforded α -oxoacetal <u>10</u> or α -diketone <u>11</u> in 82 or 65% yield, respectively. 3-Phenylselenocamphor (<u>9</u>) on the same treatment for 5 hr gave diketone <u>12</u> in 78% yield. The acetal <u>10</u> on treatment with perchloric acid gave diketone <u>11</u> in 93% yield.

These new reactions provide a convenient synthesis of sulfoxides and selenoxides which are important intermediates¹¹ for the organic synthesis, and furthermore they will be applicable to the syntheses of antitumor active keto aldehydes¹² and of the important compounds relating to the *in vivo* metabolism.

References and Notes

- ¹ E. C. Taylor, R. L. Robey, K.-T. Liu, B. Favre, H. T. Bozimo, R. A. Conley, C.-S. Chiang, A. McKillop, and M. E. Ford, J. Am. Chem. Soc., <u>98</u>, 3037 (1976); A. McKillop, Pure and Appl. Chem., <u>43</u>, 463 (1975) and references cited therein.
- ² P. G. Pearson, J. Am. Chem. Soc., <u>85</u>, 3533 (1963); T.-L. Ho, Chem. Rev., <u>75</u>, 1 (1975).
- ³ T.-L. Ho and C. M. Wong, Can. J. Chem., <u>50</u>, 3740 (1973); R. W. Ratcliffe and B. G. Christensen, Tetrahedron Lett., 4653 (1973); S. Masamune, S. Kamata, and W. Schilling, J. Am. Chem. Soc., <u>97</u>, 3515 (1975); Y. Nagao, K. Kaneko, M. Ochiai, and E. Fujita, J. C. S. Chem. Commun., 202 (1976); E. Fujita, Y. Nagao, and K. Kaneko, Chem. Pharm. Bull. (Tokyo), <u>24</u>, 1115 (1976).
- ⁴ All new compounds described in this paper indicated the rationalized IR, NMR, and mass spectral data.
- ⁵ H. J. Shine and D. R. Thompson, *Tetrahedron Lett.*, 1591 (1966).
- ⁶ The formation of the same radical <u>6</u> was also recognized by us in the ESR spectrum in concentrated sulfuric acid.
- ⁷ H. J. Shine, C. F. Dais, and R. J. Small, J. Org. Chem., <u>29</u>, 21 (1964).
- ⁸ S. Oae and N. Kunieda, Bull. Chem. Soc. Japan, <u>41</u>, 696 (1968).
- ⁹ Cf. W. K. Musker and T. L. Wolford, J. Am. Chem. Soc., <u>98</u>, 3055 (1976); B. C. Gilbert, D. K.
 C. Hodgeman, and R. O. C. Norman, J. C. S. Perkin II, 1749 (1973); I. H. Elson and J. K.

Kochi, J. Am. Chem. Soc., 95, 5060 (1973).

- ¹⁰ S. Uemura, S. Tanaka, and M. Okano, Paper Abstract of the 34th Annual Meeting of the Chemical Society of Japan, II, 778 (1976).
- ¹¹ C. R. Johnson, E. R. Janiga, and M. Haake, J. Am. Chem. Soc., <u>90</u>, 3890 (1968); H. J. Reich,
- J. M. Renga, and I. L. Reich, *ibid.*, <u>97</u>, 5434 (1975) and references cited therin.
- 12 L. G. Együd and A. Szent-Györgyi, Proc. Nat. Acad. Sci., 55, 388 (1966).

$$R^{1}-S-R^{1} \xrightarrow{\text{TTN}} R^{1}-S-R^{1} \qquad R^{2}-Se-R^{3} \xrightarrow{\text{TTN}} R^{2}-Se-R$$

$$\frac{1}{2} \qquad \frac{3}{2} \qquad Scheme I \qquad \frac{2}{4}$$

Entry	<u>1</u> : R ¹	<u>2</u> : R ²	R ³	TTN (mol.equ	iv.) ^{Solvent}	Reaction time	Yield <u>3</u>	1(%)a
1	C ₂ H ₅			2.2	CHC1 ₃ /CH ₃ CO ₂ H ^b (3:1)	5hr	86	
2	CaH4			и	` u `	п	92	
2	C.H.			u	н		94	
ă	C _c H _r			н	u	п	82	
5	06115	Celle	CeHeCHo	1.5	THF	20min		87
6		"	11		$HC(OCH_3)_3$	5min		98
7		и	Calls	н	ŤHF	24hr		92
8		<i>P</i> -CH ₃ OC ₆ H ₄	<i>P</i> -CH ₃ OC ₆ H ₄	n	J8	2hr		100

Table I. Reactions of Sulfides (1) and Selenides (2) with TIN

 α Isolated yield. b In CHCl₃/CH₃OH (1:1), the reactions with dialkyl sulfides also took place smoothly, but the reaction with diphenyl sulfide took 65 hr using 4.4 mol. equivalents of TTN. In $CHCl_3/(CH_3CO)_2O$ (3:1), all sulfides gave sulfones in 1.5 hr.

5

6

- $1\overline{2}$ R=0
- R=α-SeC₆H₅,β-H $R=(OCH_3)_2$ R=Ó

Figure 1. Esr spectra of 2,3-dipheny1-5,6-dihydro-1,4-dithiin cation radical from oxidation with TTN in DME at -80°. (a) In concentrated solution. (b) In diluted solution.

3

Entry	Haloacetyl compound	TI(I) thiolate	Solvent and reaction tim	e(hr)	Alkylthioacetyl compound and yield($\%$) ^{α}	Solvent and reaction time	α -Oxoacetal α (hr) and yiled(%) α	1
₩ 	-O-CB-	C ₂ H ₅ ST1	THF	4	Br-O-CSC2H5 91	СН₃ОН/СНСІ₃ (1 : 1)	1/2 В-ОСКОСНДА	0
2	=	(CH ₂ ST1) ₂	THF/HMPT (20 : 1)	24	(Br-0-0-scHz)2 93	CH₃OH/CHCI₃ (2 : 1)	3 " 78	œ
ω	=	CH2 (CH2 ST1)2	THF/HMPT (20 : 1)	ω	Br-Q-CSCH32CH2 83	сн₃он/снс1₃ (1 : 1)	3 = 8	ΰ
4	=	HO(CH ₂) ₂ ST1	THF	_	ЪrS(сн <u>э</u> 20Н 99	CH ₃ OH/CHCl ₃ (2 : 1)	1 . 7	7
л	Br	C ₂ H ₅ ST1	THF	22	O-C-SC2H5 94	СН₃ОН	1/4 О сн(осн _{э)z} 8	<u>ē</u>
ი	=		THF/HMPT (100 : 1)	_	00 [2 s~s] 100	CH₃OH/CHCl₃ (4 : 3)	- 4	сл Сл
7 CI	HaO	C2H5ST1	THF	сл	CH30 SC2H5 73	СН₃ОН	^{1/4} сн _{зо} сносн _{э)2} 5	ũ
8		C ₂ H ₅ ST1	THF	ယ	C₂H₅S SC₂H₅ 80	СН₃ОН	¹ ((сн _э о) ₂ сн <u>]</u> со ⁵	5
a Isoli	ated yield. b	2.2 Mol. equi	alents of TTN	l were	used, except for entry 6 (5 mol. equival	ents) and 8 (4.4 mol.	

Table II. Preparation of Alkylthioacetyl Compounds and Their Pummerer-like Reaction

1348

equivalents).